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ABSTRACT

Parkinson’s disease is the second most common neurodegenera-

tive disease worldwide. Symptoms tend to %uctuate during the

day and through disease progression. Clinical evaluations tend

to occur spaced in time. Further, the assessments used are mostly

subjective. The gold standard for evaluating disease severity is

MDS-UPDRS. The increase in sensor usage enabled objective

evaluation and continuous monitoring of the disease %uctuations.

One of the symptoms that most a&ect mobility are gait disor-

ders. The use of gait characteristics started to become popular to

monitor the disease. However, the approaches used lack in-depth

knowledge of machine learning models for disease staging. In

our work, we try to estimate the MDS-UPDRS part III score from

accelerometer data. We collected data from 74 patients using the

Axitvity AX3 device both on the wrist and lower back. We did

experiments with di&erent models, features, and windows size.

We achieved a 4.26 Mean Absolute Error on the on left out 10%

data using both devices with a 2.5-second sliding window and a

random forest model for prediction. We contribute with a com-

parison of the performed experiments and provide, according to

our experiments, the optimal models for MDS-UPDRS part III

estimation using only accelerometer data.
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1 INTRODUCTION

Parkinson’s Disease (PD) is a neurodegenerative disease that

a&ects around 1% of the world’s population. This disease is char-

acterized by motor and non-motor symptoms [15]. Motor symp-

toms include bradykinesia, tremor, rigidity, and gait impairment.

These are present in the early stages of the disease and worsen

as the disease progresses.

Although there is no cure, the available pharmacological and

non-pharmacological therapeutic interventions e&ectively con-

trol symptoms. However, as the disease progresses their e+cacy

tends to reduce and motor complications, such as motor %uc-

tuations and dyskinesia, appear [11]. These have been labeled

as ’ON’ and ’OFF’ stages [4]. To minimize the impact of these

%uctuations and inform better the clinicians there is the need to

periodically assess the symptoms. Generally, these evaluations
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require a visit to a clinic or hospital. Clinicians use validated as-

sessments for PD to characterize a patient’s current disease stage

[9]. These assessments occur spaced in time and can be hard to

capture all the %uctuations that may have happened between

appointments. Further, instruments used in clinical practice fo-

cus on subjective evaluations. Namely, visual assessments during

clinical visits that are supported by clinical scales.

The gold standard for evaluating disease severity in PD is the

Movement Disorder Society-Sponsored Revision of the Uni/ed

Parkinson’s Disease Rating Scale (MDS-UPDRS). This is a com-

prehensive rating scale that assesses both motor and non-motor

symptoms associated with Parkinson’s [7]. To optimize disease

management, close monitoring of symptom %uctuations is crucial.

However, today this monitoring is usually performed through

medical appointments, every six months, with a mean duration

of 30 minutes. Additionally, what published evidence suggests is

that patients perform di&erently during these moments, provid-

ing only information about their best capacity, rather than their

usual performance in their daily lives.

The democratization of sensors’ usage, namely the body-worn

devices, that measure acceleration, and angular velocity allowed

the increase of objective evaluations [10]. These devices passively

monitor patients during clinical evaluation and in free-living

environments. Furthermore, allowmovement metrics and feature

extraction that can be related to motor symptoms or clinical

scales used for disease assessments [6]. Gait disorders are one

of the symptoms that most a&ect mobility. Inertial measuring

units can help to identify %uctuations. There have been studies

that leverage the identi/cation of walking bouts to extract gait

metrics like step length or step variability [1, 4].

Research using these gait characteristics as a marker for PD

has demonstrated the potential for monitoring the disease in

several ways [2]. While the use of these gait characteristics has

become a popular approach for monitoring PD, novel research

has started to analyze signal processing metrics that could also

be of use for this purpose. In a 2019 study, the contributions of

signal-based features and gait characteristics for the classi/cation

of PD were analyzed [13]. Another emerging method to stage

PD is the use of total scores of the entire MDS-UPDRS or sub-

parts of the scale. Speci/cally, MDS-UPDRS III scores have been

empirically demonstrated as a good metric for monitoring the

progression of PD [12]. As such, several studies have focused

on the prediction of this score to monitor disease progression.

A recent example of this approach for the monitoring of PD

progression is the 2021 study that leveraged a convolutional

neural network (CNN) model trained using inertial data collected

from the lower back during gait to estimate MDS-UPDRS III

scores [14].While these results are promising, the authors suggest

that a comparison with traditional feature-engineered machine

learning models could be an avenue for future work, towards
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the deployment of such technologies for continuous monitoring

of PD. Other studies have revealed that it is possible to estimate

PD progression using gait data collected with accelerometers [8].

However, the relative e+cacy and e&ect of di&erent approaches

to data collection and processing, and machine learning pipeline

design still lack consensus and clear comparisons that could help

inform future research in this /eld.

In our work, we try to estimate the MDS-UPDRS part III from

accelerometer data. We collected the data using the Axitvity

AX3 device both on the wrist and lower back [3]. Our dataset

contains data collected from 74 patients (HY between 2 and 4)

at Campus Neurológico (CNS), a tertiary specialized movement

disorders center in Portugal. The /nal subset of data contained

267 instances of gait from 104 evaluation sessions. We did di&er-

ent experiments with 4 models (Random Forest, XGBoost, SVM,

Linear Regression), and 59 features from the statistical, spectral,

and temporal domains. Furthermore, we used non-overlapping

window sizes of 2.5 and 5 seconds. To validate the trained models

we used Leave One Subject Out (LOSO) cross-validation.

Our results showed that the best con/guration, with the lowest

prediction error on the left out of 10% data, achieved a 4.26 MAE,

with the Random Forest model, and a 2.5-second sliding window

using combined data from the wrist and lower back. For all of

the selected models, the con/gurations that achieved the best

results using either of the validation schemes used data collected

from the lower back or both sensors. Most models performed

better using a 5-second window length, with the exception of

the xgboost model. The best-performing linear regression and

SVM-based models used the SURF and relieF feature selection

methods.

Therefore, we contribute with the comparison of di&erent

models, features, sensor placement, and window sizes. We pro-

vide, according to our experiments, the optimal models for MDS-

UPDRS part III estimation using only accelerometer data.

2 METHODS

The MDS-UPDRS III estimation was performed using di&erent

approaches to data collection, signal processing, and using dif-

ferent machine learning pipelines. In this section, we describe

the steps taken together with the variables for each step, in order

to enable a comparison between di&erent design decisions and

their e&ect on the estimation of the disease stage.

2.1 Data Collection

We collected data from 74 patients with PD at CNS from peri-

odic evaluations conducted by trained physiotherapists. Each

participant wore an Axivity AX3 on the wrist and lower back

during a set of clinical assessments. Accelerometer data was set

to record at 100 Hz. Our dataset includes 267 instances of gait

from 104 evaluation sessions of the 10-meter walk. MDS-UPDRS

were also applied for each patient in each session. Among these

patients, 49 were male and 23 were female, while the gender of

the remaining 2 patients was not reported. The average patient

age was 70.4 years (SD=13.12). The average weight was 71.76

kg (SD=13.89) and the average height was 166.49 cm (SD=9.26).

Finally, the average MDS-UPDRS III score was 40.92 (SD=14.31)

and 2.57 (SD=0.97) for the H&Y scale.

2.2 Data Pre-Processing

In order to isolate gait instances, the selected data /les were

segmented using the annotated timestamps for the 3 trials of the

10-meter walk test. Visualization of each of the segmented gait in-

stances was then created in order to exclude session data that con-

tained sensor failures and misalignment, or mismatched times-

tamps. During this step, the vector magnitude of the accelerome-

try signal was computed and appended to each segment using

the traditional euclidean vector norm formula
√

G2 + ~2 + I2. To

avoid the possible temporal drift associated with the process,

a resampling step was performed after segmentation to ensure

even sampling, as required for the extraction of some of the used

Time and Frequency domain features. Finally, all segments were

/ltered using a fourth-order, digital low pass Butterworth /lter

with a cut-o& frequency of 20 Hz in order to remove possible

”machine noise” [5].

2.3 Evaluated Models and Features

We used 16 statistical, 26 temporal, and 17 spectral domain fea-

tures, with a total of 59. They were computed from all accelerom-

etry axes and vector magnitude. A sliding window technique

was used to segment the signal into non-overlapping windows

from which the features were extracted. Di&erent feature data

frames were then created using 2.5 and 5-second windows, both

of which were previously used in the literature [14], in order

to assess the e&ect of window size on the estimation task. Dur-

ing this feature extraction process, MDS-UPDRS III scores were

also computed and appended to the corresponding windows for

both data frames. The /rst step toward feature selection was

to use a variance /lter to exclude features with low (<0.025%)

or zero variance which lowered the feature space from 2081 to

266 in the 2.5-second window and 3081 to 452 in the 5-second

window. While this reduction may seem drastic, it is to be ex-

pected because of the way Time Series Feature Extraction Library

works, computing the same feature several times for di&erent fre-

quencies for example which results in a large number of feature

columns with hardly any variability, and thus, descriptive power.

A further feature selection step was performed using four di&er-

ent feature selection methods that implement di&erent strategies

for feature ranking. Each of these feature selection algorithms

was used to rank and select the top 10/25/50 features to be used

for the regression task using the linear regression algorithm,

and with the support vector-based model. The complete feature

subset was also used for these models, in order to establish a

baseline comparison with the remaining tree-based models that

are less a&ected by the number of features due to their capability

to perform intrinsic feature selection.

For each model, a set of parameters were selected and used in

a grid search procedure to test all possible combinations. This

procedure was then carried out for each sensor placement and the

combined sensors, and for the di&erent sliding window lengths

used during feature extraction, in order to compare the e&ect of

these variables for the estimation task. Leave One Subject Out

(LOSO) cross-validation was used during the grid search proce-

dures in order to avoid over/tting and optimize the models for

generalizability. Finally, the optimal models for each combination

of these variables were saved and used for the ensuing valida-

tion tasks. To validate the trained models, the original dataset

was split into training and testing subsets. The training subset

comprised 90% of the data and was used during the grid-search

procedure for training the models using LOSO cross-validation.

The remaining 10% of the data was then used as a validation set

to test the model’s performance on unseen data from patients

whose data the model had already seen, providing information on
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Figure 1: Overall optimal predictions on the 10% of left

out data using a Random Forest model on data collected

from both sensors and a 2.5s sliding window. Each point

represents a window.

the model’s ability to estimate MDS-UPDRS III scores for patients

that were already known to these models. These steps yield two

di&erent scores for each of the optimal models using the same

Mean Absolute Error (MAE) evaluation metric: the average MAE

for all LOSO splits during training and the MAE for the held-out

validation set. For the purpose of this study, this metric is de/ned

as the mean absolute di&erence between real (x) and estimated

(y) MDS-UPDRS III scores over the number of samples used for

estimation.

3 RESULTS AND DISCUSSION

This section lays out the results from all of the steps taken to-

ward UPDRS III estimation, including data processing, feature

extraction and selection, and /nallymodel training and validation

results.

3.1 Optimal con!gurations

The con/guration with the lowest prediction error on the left

out 10% of data used data from both devices processed using

a 2.5-second sliding window and a Random Forest model for

prediction, achieving 4.26 MAE and strong correlation (d = 0.93)

as illustrated in Figure 1. The best performing con/guration

when performing LOSO CV was a Support Vector-based model,

using data from both sensors but a 5-second feature extraction

window, achieving a MAE of 9.99. While predictions using this

model on the validation set were less accurate than some of the

other options at 7.94 MAE, it achieved the best balance when

considering both of the validation schemes. Table 1 summarizes

the optimal results achieved by each model along with the used

data sources and sliding window length for the 10% left out and

LOSO validation tasks.

3.2 Sensor placement and windows size

Both device placement and window length used during feature

extraction signi/cantly impacted the performance of all models.

For all of the selected models, the con/gurations that achieved

the best results using either of the validation schemes used data

collected from the lower back or both sensors combined. Speci/-

cally, all of the non-tree-based models performed better in both

val_m model device_placement win_length ft_sel num_fts loso_mae val_mae

1 rf combined 250 - 266 11.50 4.26

1 xgboost trunk 500 - 229 11.67 4.39

1 svm combined 500 SURF 25 9.99 7.95

1 lin_reg combined 500 reliefF 25 10.21 8.98

2 rf combined 500 - 452 11.39 11.39

2 xgboost trunk 250 - 133 11.49 5.74

2 svm combined 500 SURF 25 9.99 7.95

2 lin_reg combined 500 reliefF 25 10.21 8.98

Table 1: Optimal con!gurations used by each model to

achieve optimal MAE on the left out 10% of data (val_m =>

1) and LOSO (val_m => 2).

validation schemes using data from both sensors, with the excep-

tion of the SVM-based model using a 2.5-second window, which

compared to the other options using the same window length

achieved lower, albeit negligible, validation MAE using data from

the wrist. As for the tree-based models, optimal validation MAE

was attained by models using both sensors with the 2.5-second

sliding windows, and data from the lower back for the same

models using the 5-second window. Figures 2a and 2b illustrate

the intra and inter-model comparison for both of the validation

schemes, using di&erent window lengths. While the %uctuations

were relatively low using LOSO CV, most models performed bet-

ter using a 5-second window length, with the exception of the

xgboost model. MAE using the left out 10% of validation data

%uctuated more considerably but was also lowest using 5-second

windows for all models except RF.

3.3 Optimal parameters

As for model parameters, excluding linear regression, the remain-

ing models had di&erent parameters to achieve the best perfor-

mance during LOSO CV. For Random Forest (criterion: mae ;

max_features: 0.333 ; n_estimators: 250), for xgboost (colsam-

ple_bynode: 1; eta: 0.1 ; importance_type: total_gain; max_depth:

3 ; num_parallel_tree: 100 ; tree_method: gpu_hist), and for svm

(C: 10 ; epsilon: 0.3 ; gamma: auto ; kernel: rbf). The xgboost was

the one that used only the trunk sensor. The others models used

both devices. We used a Grid Search procedure that exhaustively

tested all parameter combinations for each model, independently

of the used device placements and sliding window lengths. The

exhaustive nature of the grid search proceduremakes this method

of parameter optimization computationally expensive. For this

reason, and considering that the procedure was used for several

models, the used parameter space for each model was not as

comprehensive as those used in some other works with a smaller

scope and narrower focus. However, the present results should

still serve as a good starting point for model tuning in future

research.

(a) LOSO CVMAE values (Y-axis)

for di"erent device placements

using 5-second windows.

(b) LOSOCVMAE values (Y-axis)

for di"erent device placements

using 2.5-second windows.

Figure 2
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3.4 Feature importance

For the models that bene/ted from it, several feature selection

methods were tested, along with di&erent numbers of features

to select. The best performing linear regression and SVM-based

models used the SURF and relieF feature selection methods re-

spectively, both selecting 25 as the optimal number of features.

We then selected the top 20 for each model. Among the 8 top per-

forming models across the two tested window lengths, no model

used data exclusively from the wrist, and only 3 models used

data exclusively from the trunk. As for the remaining models,

the majority of top-ranking features were extracted from devices

mounted on the lower back. In some cases, no wrist features were

ranked among the top 20, which suggests that although these

were used for the estimation task, their contribution is minimal,

which is in line with the minimal performance gain in these mod-

els when compared to their counterparts using data exclusively

from the lower back. Features from the anteroposterior plane of

movement (z-axis) were the most prevalent among the top 20

extracted from the trunk sensor, consisting of 50 out of the 140

features considered for this analysis. The vertical plane of move-

ment (x-axis) produced the least amount of features among those

considered here, with only 22 ranking among the top contribut-

ing features. Spectral-domain features were the most prevalent

among these, making up almost half of the 140 considered fea-

tures, with temporal domain features coming in second by a small

margin, and temporal features last consisting of a quarter of this

total.

3.5 Limitations

The dataset used in this study consisted of data collected from 74

patients. While this number of patients is signi/cant for prelimi-

nary results, a larger sample size could improve the estimation

task and further validate the present /ndings. Beyond the volume

of data used to train the models, a wider range of MDS-UPDRS

III and Hoehn and Yahr scores could also possibly improve the

results, by including a wider variety of walking patterns that in

smaller sample sizes could be considered outliers and negatively

a&ect performance. Furthermore, the inclusion of a healthy co-

hort in the dataset could provide a baseline for the models to

recognize healthy gait, exacerbating the di&erence between data

from healthy and a&ected subjects. Therefore, in future work a

longitudinal study in free-living environments with a larger sam-

ple size to address our limitations and extend our conclusions.

4 CONCLUSIONS

This paper presents a study that compares the di&erent models,

features, and window sizes to estimate MDS-UPDRS part III using

acceromeleter data. One of the most common disorders for people

with PD is gait. The increase in sensor usage opened the oppor-

tunity for increasing objective evaluations. However, there is a

lack of knowledge of the current machine learning approaches.

In our work, we compare 4 machine learning models (random

forest, xgboost, svm, and linear regression), 59 features (16 statis-

tical domain, 26 spectral domain, and 17 temporal domain), and

windows size (2.5 and 5 seconds). To validate our models we used

LOSO cross-validation. We showed that the con/guration with

the lowest prediction error on the left out 10% of data used data

from both devices processed using a 2.5-second sliding window

and a Random Forest model for prediction, achieving 4.26 MAE.

This work opens the opportunity to improve the knowledge of

machine learning approaches. However, in future work, there are

opportunities for longitudinal studies in free-living environments

with larger datasets.
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