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ABSTRACT 

With the advent of interactive virtual reality (VR) applications, 

the interest in tools that allow users to engage with VR 

environments unobtrusively and intuitively is growing. One such 

interfacing tool for VR applications is speech recognition, which 

can contribute to enhanced human-computer interaction. In this 

study, we explore the usage of a novel VR facial mask equipped 

with seven surface electromyography (sEMG) sensors to 

recognize if the user is speaking or not using machine learning. 

We collected speaking and non-speaking data from 30 

participants. The machine learning pipeline that was developed 

included data preprocessing, de-noising, filtering, segmentation, 

feature engineering, and training of a binary classification model. 

The experimental results indicate that the mask can be used to 

recognize the speaking activity. On the test data of five unseen 

participants, the best-performing model achieved an accuracy of 

89% and an F1-macro score of 91. Additionally, by removing 

each sensor from the dataset, we analyzed the individual 

influence each sensor has on the models' outcomes. We did not 

observe a significant drop in the accuracy of the models, 

indicating that using the mask speaking can be detected even if 

some of the sensors are not used. 
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1 INTRODUCTION 

Virtual reality (VR) is an emerging technology that has 

introduced immersive user experience in virtual environments 

and is expected to revolutionize the way we interact with the 

digital world. VR applications have already been widely used in 

many different disciplines, ranging from research and training 

facilities to entertainment and healthcare. With the emergence of 

interactive VR applications, there is an increasing interest in new 

immersive tools that enable users to interact with VR 

surroundings in an unobtrusive and intuitive manner. One such 

interfacing tool for VR applications is speech recognition. Its 

incorporation with VR provides users with increased flexibility 

for interfacing with VR environments and can contribute to 

improved human-computer interaction. 

In recent years, surface electromyography (sEMG)-based 

interfaces have been utilized for unobtrusive interaction in a VR 

environment. sEMG is used to measure muscle contractions 

using sensors applied directly on the skin by detecting changes 

in surface voltages on the skin when muscle activation occurs. In 

part due to its ability to be applied non-invasively, facial sEMG 

has been used to detect the activation of facial muscles that are 

activated during speaking. However, most sEMG sensors used in 

conventional speaking recognition systems have been attached 

around the user's lips and neck. This poses a number of practical 

issues, including the need for extra wearable devices in addition 

to the VR headset, limited facial muscle movement, and user 

discomfort. 

To overcome these issues, in this study we explore the usage 

of a novel facial mask equipped with sEMG sensors. The mask 

is incorporated into a VR headset to recognize if the user is 

speaking or not. Our approach is based on signal processing and 

machine learning (ML), which are used to develop a binary 

classification model. 

2 RELATED WORK 

The first studies with sEMG sensors were performed by 

Piper[1]. Since then, researchers have been widely using sEMG 

sensors to measure the electrical signal that emanates from 

contracting muscles. The usefulness of the sEMG signal for 

measuring human performance was demonstrated by Inman [2] 

who investigated the technical aspects of human locomotion. By 

the early 1960s, the improvements in signal quality and 

convenience made the sEMG sensors a common tool in clinical 

and research laboratories. Despite their popularity, current 

recording methods can be problematic in maintaining signal 

fidelity when vigorous or long-duration activities are monitored 

[4] [3] . 

Speech recognition by using sEMG was first used in the 80s 

[4] [6] . The results in these studies were preliminary but 

important for the further progress of the field. Jorgensen and 

Binsted [6] showed that it is possible to recognize speaking even 

if the words are spoken silently and/or without any actual sounds. 

Jou et al. [7]  showed that it is possible to recognize not just the 

words but also the phonemes to a certain degree. Additional 

works include direct synthesis of speech via sEMG – which aids 

people who have problems with their vocal cords or airways [8] 

[9] . 

Compared to the previous studies, we differ in the sense that 

we are using a novel facial mask – emteqPROtm, which is 

equipped with seven sEMG sensors. The sEMG sensors may be 

more error-prone compared to the intramuscular EMG sensors, 

and thus here we study their utility. Additionally, the location of 

our sEMG sensors makes the task of speaking recognition more 

challenging because the facial mask is placed on the upper part 

of the face (as part of the VR headset) and not the mouth and the 

lips – which would be more convenient for speech recognition. 
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3 DATASET 

The data collection protocol included healthy participants that 

were asked to read a pre-defined text (news article). Additionally, 

we recorded a segment where the participants were sitting still, 

i.e., we recorded a baseline session with a neutral face. This data 

was recorded while the participants were watching a neutral 

video, without moving their facial muscles or speaking.  A total 

of 30 participants were recorded, of which 18 were male and 12 

were female, with a mean age between 19 and 25 years. The 

native language of all the participants was Macedonian. 

During the data collection protocol, we were using the 

emteqPROtm mask [10] [11]  to record sEMG sensor data. The 

mask has seven EMG sensors (Figure 1): two frontalis sensors (6 

and 0 in Figure 1) used to monitor eyebrow movement; two 

orbicularis sensors (4 and 2 in Figure 1) used to monitor eye 

movements; two zygomaticus sensors (5 and 1 in Figure 1) used 

to monitor mouth and cheek movements; and one corrugator 

sensor (3 in Figure 1) used to monitor forehead movements. 

  

 

Figure 1: emteqPRO face mask with all 7 EMG sensors 

4 DATA PREPROCESSING AND 

MODELING   

The sEMG data were continuously recorded at a fixed rate of 

1000 Hz. These data underwent a data preparation process, which 

included data filtering, segmentation, and feature engineering. 

To improve the quality of the sensor data, we performed signal 

de-noising and filtering. The EMG signals were initially filtered 

with a Hampel filter to eliminate sudden peaks in the signals that 

emerge as a result of quick movements. Additionally, we also 

applied a frequency-based filtering method based on spectrum 

interpolation [12]  to reduce the noise caused by electromagnetic 

interference. [12] A sliding window technique was utilized for 

data segmentation. Specifically, the data were segmented into 

windows of size of 0.5 seconds with 0.4 seconds overlap (0.1 

seconds slide). Finally, for each sEMG channel, we extracted 34 

features, including various amplitude-based features, amplitude 

derivatives, auto-regressive coefficients, frequency-based 

features, and statistical features. The feature extraction procedure 

resulted in a total of 238 features.  

The extracted features were used as input to four classification 

algorithms: (i) K- Nearest Neighbors [13]  - a simple statistical 

algorithm where a datapoint is assigned a class according to the 

most numerous class of its k nearest neighbors; (ii) Support 

Vector Machine Classifier (SVM) [14] – an algorithm that works 

along the principle of finding a hyperplane in N-dimensional 

space to separate two classes of data points; (iii) Random Forest 

[15]  - an ensemble learning method that trains N decision trees 

using random subsets of data and features and determines the 

instance’s class by majority voting among the trained decision 

trees; and (iv) Extreme Gradient Boosting [16] - a gradient 

boosting algorithm which trains decision tree models 

sequentially, and each subsequent model strives to correct the 

errors of its predecessors. 

5 EXPERIMENTS 

5.1 Evaluation Setup 

The recorded data was split into training (20 of the 

participants), validation (5 of the participants) and test datasets 

(5 of the participants). The train dataset was used to train the 

models, the validation was used to optimize hyperparameters, 

and the test dataset was used to report the accuracy. The 

evaluation metrics we used to test the performance of our models 

were accuracy and F1 score.  

Additionally, the experiments were performed so that the 

training validation and test subsets do not have overlapping 

participants - i.e., each participant's data is found only in one of 

the three subsets. This is done so that we replicate a scenario 

where the model is used in practice on participants that are not in 

the training dataset.  

5.2 Default Hyperparameters Results 

Figure 2 presents the results (accuracy and F1-score) 

achieved by each of the algorithms with their default 

hyperparameters. We additionally included the Dummy 

classifier as a reference (which predicts the majority class). The 

results show significant improvement by all the algorithms 

compared to the Dummy classifier. The Random Forest and the 

SVM achieved similar results, while the XGBoost classifier 

achieved the best results overall (87% accuracy and 89% F1-

score). Apart from this, this classifier also scaled efficiently with 

the size of the datasets, as it was able to quickly and efficiently 

create and train models. This was also beneficial for the 

hyperparameter optimization – explained in the next subsection. 
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Figure 2: Algorithm comparison (accuracy and F1-score) 

using default hyperparameters 

5.3 Optimized Hyperparameters Results 

In the next step, we performed hyperparameter optimization. 

This process involves iterative changes of certain parameters of 

a classifier. During this process, an interval for every 

hyperparameter is defined, and afterward, each parameter is 

iteratively updated, and the performance of the models is 

monitored. During this step, all 238 features of the datasets were 

used, and a large number of numerical and other parameters 

(such as kernel for SVM, booster for XGB, etc.) were tuned. 

Figure 3 presents the results (accuracy and F1-score) 

achieved by each of the algorithms after the hyperparameter 

optimization. The results show slight improvement for the KNN, 

SVM, and XGBoost algorithms, the latest one achieving 89% 

accuracy and 91% F1-score – which was the best score that we 

achieved on this dataset. 

 

 

Figure 3: Algorithm comparison (accuracy and F1-score) 

using optimized hyperparameters 

5.4 Continuous Recognition Results 

Figure 4 illustrates the continuous recognition results for the 

five subjects from the test set achieved by the best-performing 

XGBoost classifier. A comparison was made between the true 

and the predicted class on a time scale, i.e., with a blue line, the 

true classes are presented (1 represents speaking, 0 represents not 

speaking). Additionally, the orange color presents the speaking 

predictions by the model. Each subject’s data is separated with 

black dashed lines in the figure. The results show that a large 

portion of the error is down to the baseline sessions of the last 

two subjects in the test dataset, marked with red circles. In a large 

portion of the baseline sessions, the model is falsely predicting 

speaking activity. We speculate that the reason might be that 

these two subjects were moving their head during the baseline 

session, which may have caused the sensors to shift from their 

original position and deteriorate their contact with the skin.  

 

 

Figure 4: Continuous recognition results for the XGBoost 

algorithm. The blue line represents true classes (1 – speaking, 

0 – not speaking), and the orange line represents the 

predictions (1 – speaking) 

5.5 Sensor Analysis Results 

We additionally analyzed the results achieved by the models 

if a certain sensor is missing. This way, we were able to check 

the importance of each sensor for the given task. Knowing the 

positions of the sensors on the face, we wanted to learn how the 

data would change if we were to drop data from a certain sensor 

while keeping the rest.  

The results are shown in Figure 5, which in general, show that 

the drop in accuracy and F1 score is not significant for all the 

sensors. The accuracy drops from 87% to 85% at most. A more 

detailed analysis shows that the sensors placed on left and right 

orbicularis, corrugator, and left frontalis have the most impact on 

accuracy, i.e., the accuracy drops the most when one of these 

sensors is missing. One of the reasons for this is that while the 

participants were speaking, they were actually reading – which 

means they activated their eyes which is recorded by the 

orbicularis muscles. This analysis shows us that certain muscles 

activate more while speaking compared to others, so that is why 

the model itself gains or loses accuracy more, depending on 

which sensor is dropped. 

 

 

Figure 5: Sensor analysis showing the performance when a 

particular sensor is missing. 

6 CONCLUSION 

In this work, we presented a ML approach for speaking 

recognition using facial sEMG sensors integrated into a VR 

headset. The dataset was collected with 30 healthy participants 

while reading a news article and watching videos. The results 
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show that the best performing model is XGBoost, which 

achieved 89% accuracy. Additionally, the error analysis per 

participant showed that most of the misclassifications were 

incorrect speaking predictions in the baseline (non-speaking) 

sessions of two participants. We speculate that this is caused by 

the head movement of the participants and we plan to tackle this 

using the IMU sensor on the emteqPROtm mask. 

An additional problem was that while the participants were 

reading, they were making small breaks, which were 

automatically labeled as speaking – but in fact were not speaking. 

This labeling problem will be tackled in future by using audio to 

exactly label the speaking segments. 

Finally, we plan to implement person-specific normalization 

on the EMG data. This is an important step given that different 

participants have different facial muscles, and even more, those 

muscles are activated differently while doing the same facial 

expressions or speaking. 
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