
Android Integration of a Machine Learning Pipeline for
Human Activity Recognition

Viktor!Srbinoski,!Daniel!Denkovski,!Emilija!Kizhevska,!Hristijan!Gjoreski!

!Faculty!of!Electrical!Engineering!and!Information!Technologies,!!

Ss.!Cyril!and!Methodius!University!in!Skopje,!N.!Macedonia,!Jozef!Stefan!Institute,!Slovenia!

viktor_srbinoski@hotmail.com,!danield@feit.ukim.edu.mk,!emilija.kizhevska@ijs.si,!hristijang@feit.ukim.edu.mk!

!

ABSTRACT

In!the!last!decade,!smartphones!have!seen!a!serious!growth!

in!the!processing!power.!Coupled!with!greater!affordability!

this!has!led!to!a!worldwide!smartphone!ubiquity.!Alongside!

the!advances!in!processing!and!battery!technology,!there!are!

great! advances! in! sensor! technology! as! well,! and! every!

smartphone! today! comes! equipped! with! multiple! sensors:!

accelerometer,! gyroscope,! magnetometer! etc.! The! sensory!

data!is!already!being!used!in!a!variety!of!applications,!among!

which!several!focus!on!the!human!activity!recognition.!In!this!

paper,! we! propose! a! smartphone! Android! integration! of! a!

machine!learning!pipeline!for!recognizing!human!activities.!

The!proposed!approach!uses!the!3-axis!accelerometer!in!the!

smartphone,! processes! the! data! in! real! time,! and! then! a!

machine! learning! model! recognizes! the! user's! activities! in!

real! time:! walking,! running,! jumping,! cycling! and! standing!

still.!The!proposed!Recurrent!Neural!Network!model!and!its!

machine!learning!pipeline!are!developed!on!a!publicly!open!

activity! dataset,! which! are! then! implemented! into! the!

Android! application! and! once! again! validated! on! a! dataset!

recorded!with!a!smartphone!itself.!

KEYWORDS

Human! activity! recognition,! machine! learning,! Android!

integration,! Tensorflow! Light,! recurrent! neural! network,!

accelerometer,!magnitude.!

1 INTRODUCTION

Human! Activity! Recognition! (HAR)! is! the! process! of!

examining! data! from! one! or! multiple! sensors! and!

determining!which!(if!any)!activity!is!being!performed.!The!

sensors!are!traditionally!placed!on!key!points!on!the!human!

body!and!contain!composite!data!(accelerometer,!gyroscope,!

magnetometer! data,! etc.).! Advances! in! sensor! technology!

have!made!sensors!more!compact!and!precise!over!the!years,!

but!most!importantly!more!affordable.!Today!these!sensors!

can!be!found!in!the!standard!package!of!any!smartphone.!!

The!purpose!of!this!paper!is!to!leverage!these!smartphone!

sensors!to!perform!HAR!in!real!time,!by!utilizing!an!Android!

application! which! continuously! reads! its! own! sensor! data,!

instead!of!using!the!traditional!dedicated!wearable!sensors.!

The!premise!is!that!the!smartphone!sensors!have!reached!the!

required!quality!to!be!comparable!to!the!wearable!sensors!in!

accuracy![1].!The!bene"it!of!this!approach!is!that!it!is!much!

more!convenient!to!use!smartphone!sensors!for!the!common!

user,!as!smartphones!have!become!ubiquitous.!

Human!activity!recognition!is!a!popular!topic,!which!has!

been!worked!on!extensively!in!the!recent!years![2].!Practical!

applications! for! HAR! are! mainly! in! improvement! of! the!

quality!of!life!and!medicine.!A!great!example!of!HAR!models!

being! used! in! medicine! can! be! found! in! paper! [3],! which!

focuses!on!fall!detection!mainly!for!the!elderly!population.!

Using!dedicated!wearable!sensors!to!recognize!activities!

is! the! most! common! approach.! Smartwatch! is! usually!

equipped!with!the!same!sensors!as!the!smartphones!and!has!

a!much!more!"ixed!position!on!the!body!(tightly!around!the!

wrist).! The! drawback! is! that! the! arms! are! more! prone! to!

random!movement!which! introduces!noise! into!the!system!

and!makes!HAR!more!dif"icult.!A!detailed!analysis!on! these!

issues!can!be!found!in!paper![4].!!

Using!data!from!smartphone!sensors!to!train!models!for!

HAR! has! also! been! explored! recently! in! [5],! where! a! deep!

neural!network!is!trained!on!the!data!from!multiple!sensors!

on! the! smartphone.! In! our! study! we! go! a! step! further! and!

analyze!and!compare!a!simpli"ied!subset!of!the!sensor!data!

(only!accelerometer!magnitude)!-!which!allows!us!to!have!a!

model! that! will! work! regardless! of! the! smartphone!

orientation! and! to! have! a! simple! yet! effective! method! of!

integrating!a!model!into!an!Android!application.!

We!propose!an!Android!integration!of!a!Machine!Learning!

(ML)!pipeline!for!recognizing!human!activities!in!real!time!on!

a!smartphone.!In!particular,!the!proposed!approach!uses!the!

3-axis!accelerometer!in!the!smartphone,!processes!its!data!in!

real! time,! and! then! the! ML! model! recognizes! the! user's!

activities:! walking,! running,! jumping,! cycling! and! standing!

still.!The!proposed!Recurrent!Neural!Network!(RNN)!model!

and!its!machine!learning!pipeline!are!developed!on!a!publicly!

open! activity! dataset,! then! implemented! into! an! Android!

application,! which! "inally,! is! once! again! evaluated! on! a!

dataset! recorded! with! a! smartphone! itself.! Additionally,! as!

part! of! this! study! we! release! an! Android! application! [6],!

which!can!be!used!by!other!researchers!to!easily!gather!data!

with!a!smartphone!and!as!a!practical!demonstration!of!how!

to! integrate! an! ML! model! with! an! Android! application! and!

use!the!built-in!accelerometer!data.!

2 DATASET

The! models! were! trained! on! a! publicly! available! dataset!

which!was!originally!used!to!evaluate!the! impact!of!sensor!

placement!in!activity!recognition![7].!The!dataset!consists!of!

11

wearable sensor readings from 17 healthy subjects which

perform any of 33 different activities. There are a total of 9

wearables placed on the body: two on each arm and leg, and

one on the back. Each wearable sensor reads 13 values with

a frequency of 50Hz: three for acceleration, three for

rotation, three for magnet !lux vector and four for orientation

in quaternion format. This brings the total amount of

readings to 117 per frame (9 wearable sensors with 13

values each). Out of all these measurements only six are used:

the 3 accelerometer values from each of the two upper leg

sensors (left and right). These sensors are chosen as they are

approximately at the location where a smartphone would be

(in a side pocket). Additionally, the magnitude of each sensor

is added as an additional feature, calculated as:

 !"#$%&'() = *+",,-. /*",,0. /*",,1.
(1)

 Due to the position of the sensors, recognizing motion

mainly expressed with the upper torso and arms is

impossible, so the dataset is truncated to only activities that

are dependent on the legs: walking, running, jumping, cycling

and standing still.

3 METHODOLOGY

In order to adapt the dataset to !it the needs of this

application, certain preprocessing and feature extraction is

performed, described in detail in the following subsections.

3.1 Preprocessing and segmentation

The dataset contains a disproportionate number of readings

for standing still in comparison to all other activities. To

correct this a random under-sampling is performed (only 5%

of the standing still data is used). Additionally, similar

activities are grouped together, namely jogging and running

are grouped together as running, and jumping upwards,

jumping front and back, jumping side to side, and jump rope

are grouped as jumping. The resulting distribution of data is

illustrated on Figure 1, with running having the most amount

of data (1760s), and cycling having the least (860s).

Figure 1 Activity distribution after selection

Once selection has been performed, the data is grouped

into 3-second windows. Since the data is collected at a

frequency of 50Hz, each window contains 150 records.

3.2 Feature extraction

After the data has been split into 3-second windows, !ive

statistical features are calculated per window. The !irst two

are the mean and the standard deviation of the 150 values

in the window. The three additional statistical features are:

· Mean irst-order difference: average difference

between consecutive values in the window. Computed

by !irst creating a list of !irst-order differences between

consecutive values in the window and then calculating

the mean of this list.

· Mean second-order difference: average difference

between consecutive elements in the list of !irst-order

differences.

· Min-max difference: difference between the minimum

and maximum value in the window.

The feature extraction is performed on every sensor (x, y,

z axis and magnitude on both accelerometers, left and right),

which gives a total of 40 features. The features are then

separated into three datasets: left accelerometer, right

accelerometer with 20 features each, and combined

accelerometers which contains the data from both the left

accelerometer and right accelerometer datasets, by matching

the respective features (e.g., x-axis on the left accelerometer

and x-axis on the right accelerometer are treated as the same

feature: x-axis), thus the combined accelerometers dataset

also contains 20 features, but it is twice as long.

To compare the effectiveness of a simpli!ied version of the

model that is orientation independent, a second version of

the dataset is created. This dataset uses only the features

extracted from the magnitudes of both accelerometers (5

features each). It is further split into three parts: magnitude-

only left, magnitude-only right and magnitude-only combined,

each containing !ive features.

3.3 ML Models

Multiple ML models were evaluated, such as K-NN, Linear

SVM, Random Forest, Na"#ve Bayes and Neural Networks

(DNN and RNN).

Ultimately the RNN model had the best performance. A

simple RNN was chosen as the ML model for this application.

The model is created using Keras and contains two RNN

layers with 512 nodes each and tanh activation function. The

!inal decision layer is a Dense layer with 5 nodes and a

softmax activation function. It is trained for 100 epochs with

a sparse categorical cross entropy activation function.

4 EXPERIMENTS

With the dataset prepared, the following experiments

were conducted:

· Accuracy comparison between magnitude-only and full-

featured versions of the dataset.

· Evaluation of models trained on data from the left

accelerometer and evaluated on data from the right, and

vice-versa.

4.1 Evaluation and metrics

The models were evaluated using K-fold Cross-

Validation, where K is equal to the number of subjects, and

in each iteration a different subject�s data is used as the

validation set. Splitting the data this way ensures that the test

12

data and train data do not both contain windows from the

same subject (as consecutive windows from the same subject

are very similar). Instead, when using the data from a

separate subject as a validation set, a good estimate can be

made of how the model will behave when a never seen before

person�s data needs to be evaluated.

In every iteration of the K-fold Cross-Validation a

confusion matrix is generated from the predicted values.

From there the precision and recall are calculated for every

activity as well as the overall accuracy. These metrics are

compiled for every iteration and the average values across all

iterations form the overall evaluation of the model.

4.2 Results

Initially nine models were considered and evaluated on

both the full-featured dataset and the magnitude-only

dataset (for combined accelerometers). The results are

illustrated on Figure 2, sorted by accuracy.

Figure 2 Accuracy comparison of all inspected ML models

The accuracy of the models with full features was

expectedly higher than the magnitude-only version, with the

drop in accuracy being on average 7% (K-NN being the

exception with an increase in accuracy of 2%). The RNN had

the highest accuracy in both cases, with 98.8% on the full-

featured dataset and 95.8% on the magnitude-only dataset.

Therefore, the following results focus on the RNN model.

The comparison in accuracy between the full-featured

and magnitude-only versions was made on all three datasets

(left, right and combined). The results for the RNN are

displayed on Figure 3.

Figure 3 Comparing full-featured and magnitude-only datasets

The average drop in accuracy for the RNN was 3% which is

well within acceptable boundaries. As a side note, the right

side in general seems to show slightly weaker results,

however at most this is 1.5% (when comparing the left

simpli!ied and right simpli!ied sets) which could be due to

random noise.

In order to evaluate if the model takes in a bias from the

side on which it is trained or if the sides carry an intrinsic

difference, the model was trained on one side and evaluated

on the other. This was done twice, trained on left and

evaluated on right, and trained on right and evaluated on left.

The results are displayed on Figure 4, along with a control set

which was trained and evaluated on the same side.

Figure 4 Comparison between same and opposite side evaluation

The accuracy differences are within 2% which is negligible,

and in the case of the right accelerometer dataset, evaluating

on the left actually increased the overall accuracy. This is due

to the slight difference in quality between the left and right

sides, and not due to switching sides when evaluating.

These results suggest that there is no signi!icant side bias

in the models and thus the activity recognition will work

regardless of on which side the smartphone is located. This

in addition to the simpli!ied model�s independence from

orientation make it the ideal choice for integrating with a

smartphone.

5 ANDROID INTEGRATION

In order to integrate with an Android smartphone device,

the magnitude-only model with combined accelerometers

was converted into a t!lite format using the Tensor!low Lite

library, which is the most commonly used library for arti!icial

intelligence in Android. The converted models are then

added in the !ile structure of an Android application which

reads them into memory when it starts up and uses them in

real time to recognize activities.

All Android devices come equipped with accelerometers

(along with many other sensors) and they can be accessed

with the built-in class SensorManager, which is part of the

default library: android.hardware. The data read by the

SensorManager is on a by-axis basis and in the standard unit

of m/s2. The orientation of the x, y and z axis is illustrated in

Figure 5.

The frequency with which the sensor records data is

adjustable, with the tradeoff being higher quality data vs

lower battery consumption. In our implementation, the

sensor delay is set to 20ms between reads (50Hz frequency).

Since there is no way to predict which way the

smartphone will be oriented in the pocket, the magnitude of

13

the accelerometer is the only thing that is used in the feature

calculation. The magnitude readings are kept in memory

until 150 samples are accumulated (exactly 3s), which is the

size of the window used in the training of the models. Then

the same statistical features are calculated on the collected

window: mean, std. deviation, mean !irst-order and second-

order differences, min-max difference. These values are then

placed in a tensor and it is sent as the input into the model,

which is also kept in memory (in the form of an object). The

output of the model is also a tensor (the output layer which

has a softmax activation function), which is then converted

into a single result (the node with the highest value) and is

displayed on screen.

Figure 5 Accelerometer axis orientation in smartphones

Since 150 samples need to be accumulated before the

features are calculated and the model is called to make the

prediction, there is the side effect that the displayed value on

screen is 3s behind (in other words the current activity the

user is doing will be displayed in 3s). All the data read by the

accelerometer along with the prediction and a timestamp

and is kept in memory (a single entry will contain all the

calculated features from the 3-second window, the model

prediction and a timestamp). The user can choose to export

this data to csv and use it as a dataset.

The model was evaluated on a practically collected

dataset with a Samsung Galaxy s20 smartphone (5 minutes

of each activity). The predicted value was compared to the

actual activity by cross-referencing the timestamps (the

activities were performed at speci!ic times), and a confusion

matrix was created, from which the precision, recall and f1

score, as well as overall accuracy, was calculated. The results

are displayed on Figure 6.

Figure 6 Precision, recall and f1 score results on the practically

collected dataset on a Galaxy s20 smartphone

The overall accuracy of the model was 90.2%, which is a

noticeable drop from the 95.8% evaluated from the original

training dataset. This is expected, as there is a certain amount

of noise introduced to the system from the fact that the

smartphone is not !ixed in place as rigidly as the wearables.

6 CONCLUSION

This paper presented a practical way of training and

implementing a HAR model in an Android application, along

with solving the practical issues of reading smartphone

accelerometer data such as unpredictable orientation and

whether it is kept on the left or right side.

To determine whether there is an intrinsic difference

between the left and right side or whether the models

develop a side bias, an experiment was conducted where

models were evaluated on the opposite side of where they

were trained, and it was determined that no such bias existed.

To gain independence from orientation, a simpli!ied

dataset was created which used only the magnitude readings.

Training on this dataset resulted in an expected drop in

accuracy, but within an acceptable margin.

An RNN was trained on the magnitude-only dataset and

integrated into an Android application which reads the

accelerometer data and calculates the features in real time.

The calculated features are used as an input for the model,

which then outputs the predicted activity, and is

subsequently shown on screen.

The sensors in the used smartphone did prove to be of a

comparable quality to the wearable sensors as the model

successfully recognized activities recorded with smartphone

sensors with a solid accuracy of 90.2%, even though it was

trained on a dataset from wearable sensors.

ACKNOWLEDGEMENT

This research was partially supported by the WideHealth

project - EU Horizon 2020, under grant agreement No

952279.

REFERENCES

[1] Patima Silsupadol, Kunlanan Teja, Vipul Lugade, �Reliability and

validity of a smartphone-based assessment of gait parameters across

walking speed and smartphone locations: Body, bag, belt, hand, and

pocket�, Gait & Posture, Volume 58, 2017,

[2] O. D. Lara and M. A. Labrador, "A Survey on Human Activity

Recognition using Wearable Sensors," in IEEE Communications

Surveys & Tutorials, vol. 15, no. 3, pp. 1192-1209, Third Quarter 2013

[3] Kozina, S., Gjoreski, H., Gams, M., & Lu�trek, M. (2013, September).

Efficient activity recognition and fall detection using accelerometers.

In International competition on evaluating AAL systems through

competitive benchmarking (pp. 13-23). Springer, Berlin, Heidelberg.

[4] Gjoreski, M.; Gjoreski, H.; Lu�trek, M.; Gams, M. How Accurately Can

Your Wrist Device Recognize Daily Activities and Detect Falls? Sensors

2016, 16, 800. https://doi.org/10.3390/s16060800

[5] Charissa Ann Ronao, Sung-Bae Cho, Human activity recognition with

smartphone sensors using deep learning neural networks, Expert

Systems with Applications, Volume 59, 2016, ISSN 0957-4174

[6] https://github.com/ViktorSrbinoski/SmartphoneActivityRecognition

[7] Oresti Banos, Miguel Damas, Hctor Pomares, Ignacio Rojas, Mt Attila

Toth, and Oliver Amft. A benchmark dataset to evaluate sensor

displacement in activity recognition. In Proceedings of the 2012 ACM

Conference on Ubiquitous Computing, UbiComp �12, pages 1026�1035,

New York, NY, USA, 2012. ACM.

14

