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ABSTRACT 

In!the!last!decade,!smartphones!have!seen!a!serious!growth!

in!the!processing!power.!Coupled!with!greater!affordability!

this!has!led!to!a!worldwide!smartphone!ubiquity.!Alongside!

the!advances!in!processing!and!battery!technology,!there!are!

great! advances! in! sensor! technology! as! well,! and! every!

smartphone! today! comes! equipped! with! multiple! sensors:!

accelerometer,! gyroscope,! magnetometer! etc.! The! sensory!

data!is!already!being!used!in!a!variety!of!applications,!among!

which!several!focus!on!the!human!activity!recognition.!In!this!

paper,! we! propose! a! smartphone! Android! integration! of! a!

machine!learning!pipeline!for!recognizing!human!activities.!

The!proposed!approach!uses!the!3-axis!accelerometer!in!the!

smartphone,! processes! the! data! in! real! time,! and! then! a!

machine! learning! model! recognizes! the! user's! activities! in!

real! time:! walking,! running,! jumping,! cycling! and! standing!

still.!The!proposed!Recurrent!Neural!Network!model!and!its!

machine!learning!pipeline!are!developed!on!a!publicly!open!

activity! dataset,! which! are! then! implemented! into! the!

Android! application! and! once! again! validated! on! a! dataset!

recorded!with!a!smartphone!itself.!
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1 INTRODUCTION 

Human! Activity! Recognition! (HAR)! is! the! process! of!

examining! data! from! one! or! multiple! sensors! and!

determining!which!(if!any)!activity!is!being!performed.!The!

sensors!are!traditionally!placed!on!key!points!on!the!human!

body!and!contain!composite!data!(accelerometer,!gyroscope,!

magnetometer! data,! etc.).! Advances! in! sensor! technology!

have!made!sensors!more!compact!and!precise!over!the!years,!

but!most!importantly!more!affordable.!Today!these!sensors!

can!be!found!in!the!standard!package!of!any!smartphone.!!

The!purpose!of!this!paper!is!to!leverage!these!smartphone!

sensors!to!perform!HAR!in!real!time,!by!utilizing!an!Android!

application! which! continuously! reads! its! own! sensor! data,!

instead!of!using!the!traditional!dedicated!wearable!sensors.!

The!premise!is!that!the!smartphone!sensors!have!reached!the!

required!quality!to!be!comparable!to!the!wearable!sensors!in!

accuracy![1].!The!bene"it!of!this!approach!is!that!it!is!much!

more!convenient!to!use!smartphone!sensors!for!the!common!

user,!as!smartphones!have!become!ubiquitous.!

Human!activity!recognition!is!a!popular!topic,!which!has!

been!worked!on!extensively!in!the!recent!years![2].!Practical!

applications! for! HAR! are! mainly! in! improvement! of! the!

quality!of!life!and!medicine.!A!great!example!of!HAR!models!

being! used! in! medicine! can! be! found! in! paper! [3],! which!

focuses!on!fall!detection!mainly!for!the!elderly!population.!

Using!dedicated!wearable!sensors!to!recognize!activities!

is! the! most! common! approach.! Smartwatch! is! usually!

equipped!with!the!same!sensors!as!the!smartphones!and!has!

a!much!more!"ixed!position!on!the!body!(tightly!around!the!

wrist).! The! drawback! is! that! the! arms! are! more! prone! to!

random!movement!which! introduces!noise! into!the!system!

and!makes!HAR!more!dif"icult.!A!detailed!analysis!on! these!

issues!can!be!found!in!paper![4].!!

Using!data!from!smartphone!sensors!to!train!models!for!

HAR! has! also! been! explored! recently! in! [5],! where! a! deep!

neural!network!is!trained!on!the!data!from!multiple!sensors!

on! the! smartphone.! In! our! study! we! go! a! step! further! and!

analyze!and!compare!a!simpli"ied!subset!of!the!sensor!data!

(only!accelerometer!magnitude)!-!which!allows!us!to!have!a!

model! that! will! work! regardless! of! the! smartphone!

orientation! and! to! have! a! simple! yet! effective! method! of!

integrating!a!model!into!an!Android!application.!

We!propose!an!Android!integration!of!a!Machine!Learning!

(ML)!pipeline!for!recognizing!human!activities!in!real!time!on!

a!smartphone.!In!particular,!the!proposed!approach!uses!the!

3-axis!accelerometer!in!the!smartphone,!processes!its!data!in!

real! time,! and! then! the! ML! model! recognizes! the! user's!

activities:! walking,! running,! jumping,! cycling! and! standing!

still.!The!proposed!Recurrent!Neural!Network!(RNN)!model!

and!its!machine!learning!pipeline!are!developed!on!a!publicly!

open! activity! dataset,! then! implemented! into! an! Android!

application,! which! "inally,! is! once! again! evaluated! on! a!

dataset! recorded! with! a! smartphone! itself.! Additionally,! as!

part! of! this! study! we! release! an! Android! application! [6],!

which!can!be!used!by!other!researchers!to!easily!gather!data!

with!a!smartphone!and!as!a!practical!demonstration!of!how!

to! integrate! an! ML! model! with! an! Android! application! and!

use!the!built-in!accelerometer!data.!

2 DATASET 

The! models! were! trained! on! a! publicly! available! dataset!

which!was!originally!used!to!evaluate!the! impact!of!sensor!

placement!in!activity!recognition![7].!The!dataset!consists!of!
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wearable sensor readings from 17 healthy subjects which 

perform any of 33 different activities. There are a total of 9 

wearables placed on the body: two on each arm and leg, and 

one on the back. Each wearable sensor reads 13 values with 

a frequency of 50Hz: three for acceleration, three for 

rotation, three for magnet !lux vector and four for orientation 

in quaternion format. This brings the total amount of 

readings to 117 per frame (9 wearable sensors with 13 

values each). Out of all these measurements only six are used: 

the 3 accelerometer values from each of the two upper leg 

sensors (left and right). These sensors are chosen as they are 

approximately at the location where a smartphone would be 

(in a side pocket). Additionally, the magnitude of each sensor 

is added as an additional feature, calculated as: 

 !"#$%&'() = *+",,-. /*",,0. /*",,1. 
( 1 ) 

 

    Due to the position of the sensors, recognizing motion 

mainly expressed with the upper torso and arms is 

impossible, so the dataset is truncated to only activities that 

are dependent on the legs: walking, running, jumping, cycling 

and standing still. 

3 METHODOLOGY 

In order to adapt the dataset to !it the needs of this 

application, certain preprocessing and feature extraction is 

performed, described in detail in the following subsections. 

3.1 Preprocessing and segmentation 

The dataset contains a disproportionate number of readings 

for standing still in comparison to all other activities. To 

correct this a random under-sampling is performed (only 5% 

of the standing still data is used). Additionally, similar 

activities are grouped together, namely jogging and running 

are grouped together as running, and jumping upwards, 

jumping front and back, jumping side to side, and jump rope 

are grouped as jumping. The resulting distribution of data is 

illustrated on Figure 1, with running having the most amount 

of data (1760s), and cycling having the least (860s). 

 
Figure 1 Activity distribution after selection 

 

Once selection has been performed, the data is grouped 

into 3-second windows. Since the data is collected at a 

frequency of 50Hz, each window contains 150 records. 

3.2 Feature extraction 

After the data has been split into 3-second windows, !ive 

statistical features are calculated per window. The !irst two 

are the mean and the standard deviation of the 150 values 

in the window. The three additional statistical features are:  

· Mean  irst-order difference: average difference 

between consecutive values in the window. Computed 

by !irst creating a list of !irst-order differences between 

consecutive values in the window and then calculating 

the mean of this list. 

· Mean second-order difference: average difference 

between consecutive elements in the list of !irst-order 

differences. 

· Min-max difference: difference between the minimum 

and maximum value in the window. 

The feature extraction is performed on every sensor (x, y, 

z axis and magnitude on both accelerometers, left and right), 

which gives a total of 40 features. The features are then 

separated into three datasets: left accelerometer, right 

accelerometer with 20 features each, and combined 

accelerometers which contains the data from both the left 

accelerometer and right accelerometer datasets, by matching 

the respective features (e.g., x-axis on the left accelerometer 

and x-axis on the right accelerometer are treated as the same 

feature: x-axis), thus the combined accelerometers dataset 

also contains 20 features, but it is twice as long. 

To compare the effectiveness of a simpli!ied version of the 

model that is orientation independent, a second version of 

the dataset is created. This dataset uses only the features 

extracted from the magnitudes of both accelerometers (5 

features each). It is further split into three parts: magnitude-

only left, magnitude-only right and magnitude-only combined, 

each containing !ive features. 

3.3 ML Models 

Multiple ML models were evaluated, such as K-NN, Linear 

SVM, Random Forest, Na"#ve Bayes and Neural Networks 

(DNN and RNN).  

Ultimately the RNN model had the best performance. A 

simple RNN was chosen as the ML model for this application. 

The model is created using Keras and contains two RNN 

layers with 512 nodes each and tanh activation function. The 

!inal decision layer is a Dense layer with 5 nodes and a 

softmax activation function. It is trained for 100 epochs with 

a sparse categorical cross entropy activation function. 

4 EXPERIMENTS 

With the dataset prepared, the following experiments 

were conducted: 

· Accuracy comparison between magnitude-only and full-

featured versions of the dataset. 

· Evaluation of models trained on data from the left 

accelerometer and evaluated on data from the right, and 

vice-versa. 

4.1 Evaluation and metrics 

The models were evaluated using K-fold Cross-

Validation, where K is equal to the number of subjects, and 

in each iteration a different subject�s data is used as the 

validation set. Splitting the data this way ensures that the test 
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data and train data do not both contain windows from the 

same subject (as consecutive windows from the same subject 

are very similar). Instead, when using the data from a 

separate subject as a validation set, a good estimate can be 

made of how the model will behave when a never seen before 

person�s data needs to be evaluated. 

In every iteration of the K-fold Cross-Validation a 

confusion matrix is generated from the predicted values. 

From there the precision and recall are calculated for every 

activity as well as the overall accuracy. These metrics are 

compiled for every iteration and the average values across all 

iterations form the overall evaluation of the model. 

4.2 Results 

Initially nine models were considered and evaluated on 

both the full-featured dataset and the magnitude-only 

dataset (for combined accelerometers). The results are 

illustrated on Figure 2, sorted by accuracy. 

 
Figure 2 Accuracy comparison of all inspected ML models 

 

The accuracy of the models with full features was 

expectedly higher than the magnitude-only version, with the 

drop in accuracy being on average 7% (K-NN being the 

exception with an increase in accuracy of 2%). The RNN had 

the highest accuracy in both cases, with 98.8% on the full-

featured dataset and 95.8% on the magnitude-only dataset. 

Therefore, the following results focus on the RNN model.  

The comparison in accuracy between the full-featured 

and magnitude-only versions was made on all three datasets 

(left, right and combined). The results for the RNN are 

displayed on Figure 3. 

 
Figure 3 Comparing full-featured and magnitude-only datasets 

 

The average drop in accuracy for the RNN was 3% which is 

well within acceptable boundaries. As a side note, the right 

side in general seems to show slightly weaker results, 

however at most this is 1.5% (when comparing the left 

simpli!ied and right simpli!ied sets) which could be due to 

random noise. 

In order to evaluate if the model takes in a bias from the 

side on which it is trained or if the sides carry an intrinsic 

difference, the model was trained on one side and evaluated 

on the other. This was done twice, trained on left and 

evaluated on right, and trained on right and evaluated on left. 

The results are displayed on Figure 4, along with a control set 

which was trained and evaluated on the same side. 

 
Figure 4 Comparison between same and opposite side evaluation 

 

The accuracy differences are within 2% which is negligible, 

and in the case of the right accelerometer dataset, evaluating 

on the left actually increased the overall accuracy. This is due 

to the slight difference in quality between the left and right 

sides, and not due to switching sides when evaluating. 

These results suggest that there is no signi!icant side bias 

in the models and thus the activity recognition will work 

regardless of on which side the smartphone is located. This 

in addition to the simpli!ied model�s independence from 

orientation make it the ideal choice for integrating with a 

smartphone. 

5 ANDROID INTEGRATION 

In order to integrate with an Android smartphone device, 

the magnitude-only model with combined accelerometers 

was converted into a t!lite format using the Tensor!low Lite 

library, which is the most commonly used library for arti!icial 

intelligence in Android. The converted models are then 

added in the !ile structure of an Android application which 

reads them into memory when it starts up and uses them in 

real time to recognize activities. 

All Android devices come equipped with accelerometers 

(along with many other sensors) and they can be accessed 

with the built-in class SensorManager, which is part of the 

default library: android.hardware. The data read by the 

SensorManager is on a by-axis basis and in the standard unit 

of m/s2. The orientation of the x, y and z axis is illustrated in 

Figure 5. 

The frequency with which the sensor records data is 

adjustable, with the tradeoff being higher quality data vs 

lower battery consumption. In our implementation, the 

sensor delay is set to 20ms between reads (50Hz frequency). 

Since there is no way to predict which way the 

smartphone will be oriented in the pocket, the magnitude of 
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the accelerometer is the only thing that is used in the feature 

calculation. The magnitude readings are kept in memory 

until 150 samples are accumulated (exactly 3s), which is the 

size of the window used in the training of the models. Then 

the same statistical features are calculated on the collected 

window: mean, std. deviation, mean !irst-order and second-

order differences, min-max difference. These values are then 

placed in a tensor and it is sent as the input into the model, 

which is also kept in memory (in the form of an object). The 

output of the model is also a tensor (the output layer which 

has a softmax activation function), which is then converted 

into a single result (the node with the highest value) and is 

displayed on screen.  

 
Figure 5 Accelerometer axis orientation in smartphones 

 

Since 150 samples need to be accumulated before the 

features are calculated and the model is called to make the 

prediction, there is the side effect that the displayed value on 

screen is 3s behind (in other words the current activity the 

user is doing will be displayed in 3s). All the data read by the 

accelerometer along with the prediction and a timestamp 

and is kept in memory (a single entry will contain all the 

calculated features from the 3-second window, the model 

prediction and a timestamp). The user can choose to export 

this data to csv and use it as a dataset.  

The model was evaluated on a practically collected 

dataset with a Samsung Galaxy s20 smartphone (5 minutes 

of each activity). The predicted value was compared to the 

actual activity by cross-referencing the timestamps (the 

activities were performed at speci!ic times), and a confusion 

matrix was created, from which the precision, recall and f1 

score, as well as overall accuracy, was calculated. The results 

are displayed on Figure 6. 

 

 
Figure 6 Precision, recall and f1 score results on the practically 

collected dataset on a Galaxy s20 smartphone 

The overall accuracy of the model was 90.2%, which is a 

noticeable drop from the 95.8% evaluated from the original 

training dataset. This is expected, as there is a certain amount 

of noise introduced to the system from the fact that the 

smartphone is not !ixed in place as rigidly as the wearables. 

6 CONCLUSION 

This paper presented a practical way of training and 

implementing a HAR model in an Android application, along 

with solving the practical issues of reading smartphone 

accelerometer data such as unpredictable orientation and 

whether it is kept on the left or right side. 

To determine whether there is an intrinsic difference 

between the left and right side or whether the models 

develop a side bias, an experiment was conducted where 

models were evaluated on the opposite side of where they 

were trained, and it was determined that no such bias existed.  

To gain independence from orientation, a simpli!ied 

dataset was created which used only the magnitude readings. 

Training on this dataset resulted in an expected drop in 

accuracy, but within an acceptable margin. 

An RNN was trained on the magnitude-only dataset and 

integrated into an Android application which reads the 

accelerometer data and calculates the features in real time. 

The calculated features are used as an input for the model, 

which then outputs the predicted activity, and is 

subsequently shown on screen. 

The sensors in the used smartphone did prove to be of a 

comparable quality to the wearable sensors as the model 

successfully recognized activities recorded with smartphone 

sensors with a solid accuracy of 90.2%, even though it was 

trained on a dataset from wearable sensors. 
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