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Abstract - Parkinson’s disease (PD) is one of the most common 

neurodegenerative disorders of the central nervous system, 

which predominantly affects patients’ motor functions, 

movement, and stability. Monitoring movement in patients 

with PD is crucial for inferring motor state fluctuations 

throughout daily life activities, which aids in disease 

progression analysis and assessing how patients respond to 

medications over time. In this preliminary study, we examine 

the possibility of using smart glasses equipped with Inertial 

Measurement Unit (IMU) sensors for providing objective 

information on the motor state of PD patients. Data was 

collected from seven patients with PD with varying levels of 

symptom severity, who performed a total of 35 trails of the 

Timed-Up-and-Go (TUG) test while wearing the glasses. We 

present an IMU-based step-detection algorithm with a 

potential for continuous monitoring of patients’ gait. 

Furthermore, the analyses reveal patient-specific clusters in 

the sensor data, suggesting the possibility of developing 

personalized models for monitoring symptom progression. 

The findings suggest that smart glasses have the potential for 

unobtrusive and continuous screening of PD patients’ gait, 

enhancing the medical assessment and treatment.  

Keywords - Parkinson’s disease, smart glasses, inertial 

measurement unit, gait analysis 

I. INTRODUCTION 

Parkinson’s disease (PD) is one of the most common 
progressive neurological disorders. In the past 25 years, the 
prevalence of Parkinson's disease has doubled globally. 
Global estimates in 2019 showed over 8.5 million 
individuals living with PD. PD predominantly impairs 
patients’ motor abilities but is also associated with a wide 
variety of non-motor complications, including cognitive 
impairment, mental health and sleep disorders, sensory 
disturbances, and other behavioral problems. The severity 
and frequency of the symptoms usually increase as the 
disease progresses over time, impacting the patient's mental 
health and self-esteem, and significantly worsening their 
quality of life. Gait impairments are considered a good 
indicator of the progression of the disease, and can provide 
valuable insight into a patient’s overall health, cognitive 
function, fall risk, and likelihood of institutionalization [1], 
[2]. Therefore, having efficient and reliable tool for gait 

monitoring and analysis is crucial for early diagnosis and 
tracking the progression of PD. 

Fortunately, mobile health and behavior monitoring 
technology has advanced significantly with the availability 
of small, wearable, low-cost sensors combined with 
advanced signal processing, machine learning, and 
information extraction methods [3]. In the PD field, 
advanced analytics applied to speech (e.g.,  audio data), gait 
(e.g., accelerometer data), handwriting (e.g., touchscreen 
data), and face movements (e.g., video data), have offered 
great potential for disease monitoring and management [4], 
[5]. Adopting wearable and smart devices for PD has 
enabled an understanding of patients’ symptoms outside the 
clinic (e.g., while performing everyday activities). The 
mobile-health tools also enable clinicians to continuously 
monitor the response of people with Parkinson's disease to 
various treatments, opening the opportunity to adapt 
medications efficiently [6]. Furthermore, recent meta-
reviews demonstrate that people with Parkinson’s disease 
want to use digital technologies [6], [7], [8]. Examples of 
perceived advantages include access to specialists, 
convenience, and time savings. 

However, the meta-reviews also demonstrate that 
existing digital solutions for PD do not live up to the 
expectations [9]. One important challenge is acceptance, 
i.e., in future digital tools for improved care of PD patients 
should be much more user-friendly than average digital 
tools, given the motor and cognitive challenges PD patients 
may face. Another important challenge is personalization. 
Personalization is essential for PD given the symptoms’ 
unpredictability and high inter-person variability [6], [8]. A 
third challenge is validation, i.e., the development of PD 
digital tools must be performed in collaboration with expert 
medical teams. The digital tools must also be validated 
against established clinical measures [10], [5]. 

This study is a step towards addressing the three 
challenges of the existing digital tools, acceptance, 
personalization, and validation. We aim to maximize user 
acceptance by providing a digital solution based on an 
object that is omnipresent in the life of PD patients, i.e., 
eyeglasses. The eyeglasses should also enable user-specific 
data, provided that they are worn daily by the PD patients. 
The user-specific data provided by the glasses could then 



be used for personalized solutions. Finally, aiming towards 
clinical validation, this study provides initial analysis of 
data collected in a clinic with actual PD patients while 
performing a clinically validated protocol, Timed-Up-and-
Go (TUG) [11]. 

II. BACKGROUND AND RELATED WORK 

The Timed-Up-and-Go (TUG) test is a clinical tool 
commonly used for measuring motor dysfunction in PD. 
The subject stands up from sitting, walks three meters, 
turns, walks back to the chair, and sits back down. The 
examiner measures, in seconds, the time taken to complete 
the task [11]. Total time taken has been shown to correlate 
with disease severity [12], risk of falls over the next year 
[13], [14], and response to dopaminergic therapies [15]. 
The TUG test is limited in that it measures the patient at a 
single point and is not truly representative of all activities 
of daily living (ADL). In addition, dopaminergic 
medications have "on" phases (peak effect) and "off" 
phases (trough effect), which makes the comparison of 
TUG testing over time challenging as patients may be in a 
different part of this cycle [16].  

Many studies have looked at wearable devices which 
can track movements of PD patients without the need for a 
direct observer. Multiple studies have validated wearable 
devices during TUG testing and found reliability in 
measuring the total time taken [17], predicting fall risk, and 
gait and mobility parameters [18]. Wearable sensors have 
also been shown to delineate the time taken for specific 
movements such as the sit-to-stand or stand-to-sit transition 
[19], gait speed, and turning speed [20]. A study by Weiss 
et al. [21] measured data from a sensor worn on the lower 
back for three days and found a significantly improved 
ability to predict fall risk compared to commonly used 
clinical scoring measures. Wearable sensors have also been 
used to measure Freezing Of Gait (FOG) symptoms, i.e., 
when the patient is unable to initiate movement, over longer 
time periods [22], [23]. This is important as there may be 
specific triggers for this, such as walking through a narrow 
space, which cannot be replicated during a TUG test. 
Therefore, wearable devices can be used to enhance PD 
monitoring and aid medication decisions by giving 
clinicians information about the patient in a wider variety 
of settings and over a longer time period. 

This study aims to assess the feasibility of using smart 
glasses equipped with an Inertial Measurement Unit (IMU) 
sensor for monitoring gait in patients with PD as an 
objective measurement of their motor state. From wearable 
sensing perspective, the head is a promising position for 
IMU sensor placement that should provide less noisy 
sensor data compared to other sensor placements (e.g., 
wrist/smartwatch). This is because our hands can be 
involved in a variety of micro and macro tasks (from 
running to typing on a keyboard). On the other hand, the 
human body has a natural mechanism to keep the head 
steady in space when the body is moving in order to 
maintain a stable visual field [24].  

III. DATASET 

A total of seven PD patients (four females and three 
males, with a mean age of 77 ± 7.3 years, range 68–87 

years) with different levels of disease symptom severity 
were recruited. All participants provided written informed 
consent before participating in the study. For data 
collection, we used the OCOsense™ smart glasses (Figure 
1), developed by Emteq Labs. The smart glasses are 
equipped with: (i) seven OCO™ sensors that measure skin 
movement in three dimensions (location indicated by the 
green rectangles in Figure 1), and (ii) a 9-axis IMU sensor 
(accelerometer, gyroscope, and magnetometer), including 
an altimeter (located in the right arm of the glasses frame, 
indicated by the purple rectangle in Figure 1). The 
orientation of the inertial sensor in the glasses can be 
determined by aligning the black dot on the zoomed inertial 
sensor in Figure 1 and the white dot below the purple 
rectangle on the glasses frame. This results in the x-axis 
being vertically oriented (opposite of the gravitational 
force), the y-axis being aligned with the glasses arm 
(pointing towards the ear), and the z-axis being the 
horizontal axis (pointing to the head).  

The experimental protocol was based on the Timed-Up-
and-Go (TUG) test: the participants sat on a chair, stood up, 
walked straight for three meters at their normal speed, 
turned 180° around an obstacle, walked straight back to the 
chair, did another 180° turn, and finally sat down on the 
chair. They completed five repetitions of the TUG test, 
resulting in a total of 35 walking trials in the dataset. All 
participants were able to perform all trials independently, 
without an assistive device. The sessions were also 
recorded with a video camera. The study was reviewed and 
approved by the NHS research ethics committee, (ref: 
18/WM/0205) and took place at Queen Victoria Hospital in 
East Grinstead, England. 

All participants completed two questionnaires: the 
Freezing of Gait (FOG) Questionnaire and the Parkinson’s 
Disease Questionnaire (PDQ-8). The former includes six 
questions and is focused on FOG severity and gait 
impairments over the last week, while the latter includes 
eight questions about mobility, activities of daily living, 
emotional well-being, stigma, social support, cognition, 
communication, and bodily discomfort, and is used to 
quantify the quality of life among PD patients. Each 
question was scored between zero and four. A higher score 
on the FOG questionnaire corresponds to more severe FOG 
episodes. A higher score for the PDQ-8 questionnaire 
signifies a poorer quality of life and a more severe form of 
the disease. 

 

Figure 1. OCOsense™ glasses and the sensors’ location. The green 

rectangles represent the OCO™ sensors, and the purple rectangle 

represents the 9-axis inertial sensor. 



TABLE 1. DEMOGRAPHICS DATA AND QUESTIONNAIRES’ SCORES.  

 

The final scores from the questionnaires, alongside the 
participant demographics, are presented in Table 1. The 
questionnaire’s score for each participant was divided by 
the total possible score (for each questionnaire separately), 
and the final scores in the table are given as a percentage 
out of 100. 

IV. SENSOR DATA ANALYSIS 

A. Sensor data preprocessing 

The sensor data was collected using Emteq’s 
OCOsense™ smart-glasses that provided 3-axis 
accelerometer, 3-axis gyroscope, and 3-axis magnetometer 
data, all sampled at 50 Hz. To reduce the impact of 
high-frequency artifacts and preserve the gait information 
within the signals, a 3rd order Butterworth bandpass filter 
was applied to the sensor data. It allowed only frequencies 
within the range of 0.1 to 5 Hz to pass through, effectively 
filtering out frequencies irrelevant to gait analysis and 
ensuring that the signals are not impacted by noise. Figure 

2 presents an example of a raw acceleration signal recorded 
during a walking activity, and the same signal after the pre-
processing.  

B. Step detection – heathy participants 

We implemented a step detection method that involves 
analyzing the periodic differences present in the pre-
processed accelerometer magnitude data. The peak 
detection is based on the first order difference of the signal. 

 

Figure 2. An example of a raw and processed acceleration signal (x-axis). 

The algorithm has two parameters, a minimum amplitude 
threshold above which a data point can be considered as a 
peak, and a minimum time distance required between two 
peaks. The detected peaks in the acceleration signal 
correspond to the moment of highest impact during each 
step. Similarly, if we invert the acceleration signal and 
detect the peaks in the inverted signal, we are also able to 
detect the start and end of each step, or the heel strike and 
toe off. An example for the step detection algorithm is 
presented in  Figure 3. The figure displays the change in 
acceleration (represented by the x-axes and measured in 
meter per second squared). We consider the x-axis to be the 
most informative for the walking activity because of its 
orientation (see Figure 1). 

Before applying the step-detection method on the data 
from the PD patients, we performed in-lab testing with data 
from four healthy participants (with a mean age of 23.3 ± 
1.64) following a simple testing scenario. The participants 
wore the Emteq’s OCOsense™ glasses and completed two 
sessions, in each performing twenty steps at their normal 
walking pace. Thus, the speed of walking varied between 
the participants. We evaluated the method using Mean 
Absolute Percentage Error (MAPE) (1): 

 𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝐴𝑖−𝐷𝑖

𝐴𝑖
|𝑛

𝑖=1  () 

where n is the number of participants; Ai is the actual 

number of steps that the i-th participant performed; and Di 

is the number of detected steps based on the step detection 

method. This dataset was also used to fine-tune the 

parameters of the peak detector. The final MAPE score 

achieved by the method was of 1.3%. This means that error 

was below one step per participant (on average). 

 

C.  Step detection – PD participants 

The step-detection method was then applied to analyze 
the number of steps performed by the Parkinson’s patients 
during the five trials of the TUG test. The number of 
detected steps in each trial for each participant is reported 
in Table 2. The average number of steps across all 
participants was 15.9 with a standard deviation of 5.45. The 
average MAPE in step detection across the participants was 
8.1%, which represents an average error of 1.3 steps (out of 
16). 

 

Figure 3. An example of a processed acceleration signal (x-axis) and the 

detected steps. 

 

ID 
Age 

(Years) 
Sex 

FOG 

Score 

(%) 

PDQ-8 

Score 

(%) 

1 70 Male 20.8 46.9 

2 73 Female 4.2 40.6 

3 83 Female 87.5 75.0 

4 68 Female 66.7 37.5 

5 73 Male 25.0 31.3 

6 86 Male 66.7 65.6 

7 87 Female 33.3 34.4 



TABLE 2. NUMBER OF DETECTED STEPS FOR EACH PARTICIPANT IN FIVE 

TUG SESSIONS. 

ID S1 S2 S3 S4 S5 FOG  PDQ-8 

1 16 16 16 14 14 20.8 46.9 

2 11 12 11 10 12 4.2 40.6 

3 33 25 24 27 24 87.5 75.0 

4 13 13 14 15 14 66.7 37.5 

5 11 11 11 11 11 25.0 31.3 

6 24 19 19 19 20 66.7 65.6 

7 16 13 13 13 13 33.3 34.4 

 

Patients with PD experience changes in their gait, 
including a decrease in walking speed and reduced step 
length. This is demonstrated by the number of detected 
steps required by the patients to complete the TUG test. The 
results show that participant three, who has the most severe 
PD symptoms according to the scores of the questionnaires 
(FOG Score = 87.5, PDQ Score = 75.0), shows notably 
increased number of steps for completion of the TUG test 
(26.6 ± 3.1), compared to the rest of the participants. On the 
other hand, participant five, who is ranked 5th on the FOG 
Score scale and 7th on the PDQ-8 scale (indicating that this 
participant is the one with the least severe form of the 
disease across the dataset), had the lowest number of 
detected steps, on average (11.0 ± 0.0). 

To further determine the strength of the relationship 
between the questionnaires’ scores and the number of 
detected steps performed during the TUG test, we 
performed linear regression analysis and obtained the 
correlation coefficients. These results are depicted in 
Figure 4. 

 

 

 

Figure 4. Linear Regression Analysis of the FOG and PDQ-8 

Questionnaires Scores versus the number of detected steps performed 

during the TUG test. 

A positive correlation was observed in both tested 
cases. In general, the results show that the number of 
detected steps required for completing the TUG test are 
stronger correlated with the PDQ-8 Score (r=0.92) that the 
FOG Score (r=0.75).  Despite the lower performance of the 
step detection method on the PD patient dataset compared 
to the healthy participants dataset, the results still 
demonstrate a strong correlation between the detected steps 
and the scores of the PD-specific questionnaires (FOG and 
PDQ-8). This correlation provides evidence for the 
potential utility of the step detection method as a tool for 
monitoring the progression of PD symptoms. 

D. Personalized Gait analysis 

Next, we explored whether there are intra- and 
inter-person characteristics in the acceleration signals. The 
sensor data contains five walking signatures per 
participants – given that each PD participant performed five 
repetitions of the TUG test. The resulting walking 
signatures for each participant are presented in Figure 5. In 
the figure, each of the horizontal subplots corresponds to 
data from a single participant, which are further divided 
into five sessions marked by the vertical gray lines. The 
x-axis represents the traveled distance (5 x 300 cm), and the 
y-axis represents the acceleration as measured through the 
IMU sensor. The walking signature is generated by 
interpolating the scattered dots, each represent–ting a single 
step, as detected by the algorithm. The steps (dots) are 
plotted on the graph based on the distance travelled during 
each step as determined by assuming a constant walking 
speed (on the x-axis), and the magnitude of acceleration 
which they produce (on the y-axis).  

 We used the dynamic time warping (DTW) algorithm 
to search for similarities among and within people (intra- 
and inter-person). The algorithm evaluates the similarity of 
two time-sequences by using the Euclidian formula to 
calculate distance. The intra-person distance for a 
participant was calculated as the average DTW distance 
between all pairs of walking signatures generated by that 
participant (one participant has five walking signatures). 
Similarly, the inter-person distance for a pair of participants 
was calculated as the average DTW distance between all 
pairs of walking signatures generated by the two 
participants (each of them has five signatures), where one 
item in the pair always belongs to the first participant and 
the second item belongs to the second participant. The 
results showed clear examples of contrasting and similar 
walking signatures. Participants at the opposing ends of the 
PDQ-8 spectrum (participant three and participant five) had 
a notable difference in gait, with the lowest similarity value 
recorded compared to the other pairs of participants. 
Similarly, the participants with comparable PDQ-8 scores 
(e.g., participant seven and participant four) had the highest 
similarity score in the inter-person analysis. In contrast, the 
intra-person comparison yielded interesting results 
regarding the participants with high FOG scores. 
Participants three, four and six had the highest similarity 
scores. This could be due to their premeditated walking 
style; a technique used to manage and prevent FOG 
episodes. A larger dataset is needed to obtain a definitive 
answer. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With a view towards real-time machine-learning 
analysis, we performed additional experiments with 
segmented data. More specifically, the data was first 
filtered and then segmented using a sliding window of two 
seconds and a 50% overlap. We extracted nine 
general-purpose statistical features from the accelerometer 
and gyroscope sensor signals, resulting in a total of 72 
features. The features included the mean, standard 
deviation, minimum, maximum, kurtosis, skewness, value 
range, root mean square, and interquartile range. We 
conducted the initial analysis in this study with a small 
number of simple features that are computationally 
inexpensive in an effort to provide real-time processing on 
the glasses in the future. The extracted features were then 
used the with the t-distributed stochastic neighbour 
embedding (t-SNE) method [25] for visualization, and to 
determine whether the sensor data recorded from the 
glasses could reveal additional information about the 
patients. The method was applied to the feature vectors 
extracted from the walking segments from the TUG test 
trials. The result of the t-SNE analysis is shown in Figure 6. 
The figure shows several distinct clusters of data, 
highlighting visible differences in walking styles among 
PD patients.  

  

Figure 6. t-SNE visualization of the walking data from the TUG test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The observed variations in the walking styles could 
potentially be related to the severity of the PD. While 
further research with a larger sample size and more diverse 
patient population is needed to draw definitive conclusions 
about the uniqueness of each patient’s walking style, these 
findings suggest that the glasses-based data is sufficiently 
sensitive to be used for the development of personalized 
models for patient-specific monitoring of symptom 
progression. Such personalized monitoring could provide 
valuable information for the management of PD, enabling 
more targeted interventions based on individual patient 
needs. 

V. CONCLUSION 

In this paper, a preliminary analysis was presented with 
regards to the ability of Emteq’s novel OCOsense™ smart 
glasses equipped with IMU sensors to provide objective 
information on the motor state in patients with Parkinson’s 
disease. We used data from seven Parkinson’s disease 
patients with varying levels of the disease's symptoms 
severity who were performing the Timed-Up-and-Go 
(TUG) test while wearing the glasses.  

Although only a small group of PD patients were 
examined in the experiment, the analysis suggests that 
IMU-equipped smart glasses have the potential to provide 
information about patients’ gait and can be used to assess 
the severity level of Parkinson’s disease as measured by 
two standardized questionnaires. They can therefore be 
considered as a screening tool that will continuously 
monitor Parkinson’s disease patients’ gait and motor 
activity. Moreover, the analysis of the walking data has 
shown visible differences walking styles among PD 
patients, which may also depend on the severity of the 
disease. This indicates that the glasses-based sensor data is 
sensitive enough to develop personalized models for 
patient-specific monitoring of symptom progression.  

Figure 5. Participant’s walking signature, throughout the five sessions. Each horizontal plot represents a single participant, with the grey line dividing 
the plot into the five separate sessions. 



Some limitations of the presented work are the small 
number of PD patients in the study and the narrow focus of 
gait analysis only during the TUG test. While the 
preliminary results are promising, it is crucial to validate 
our findings on a larger scale and analyze gait during 
different activities of daily living. To address these 
limitations, we are currently undertaking the systematic 
organization of a large-scale data collection, which aims to 
compile data from numerous individuals diagnosed with 
Parkinson's disease. This data collection will also include 
different positions of the IMU sensors that will enable 
comparison with our glasses-based approach. Additionally, 
we plan to add other daily-life activities, including different 
household and core self-care activities, which will allow us 
to expand our analysis of gait patterns during day-to-day 
activities, but also other PD related symptoms that occur 
during daily living, such as body tremors. Moreover, we 
intend to conduct a longitudinal study to determine whether 
data acquired from the glasses could be used to track 
changes in the disease symptoms over time, which will be 
beneficial for inferring early disease progression or 
deterioration. 
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